A Level Maths Revision Checklist

Physics and Maths Tutor has loads of great resources to help to to revise:

Website	https://physicsandmathstutor.com
Edexcel	$\underline{\text { https://www.physicsandmathstutor.com/maths-revision/gcse-questi }}$
ons-edexcel/	

Pure

Sequences and series	Understand and use the binomial expansion for positive integer n; how other notations link to binomial probabilities.	
	Extend to any rational n, including its use for approximation; be aware that the expansion is valid for $\left.\frac{b x}{a} \right\rvert\,<1$ (proof not required)	$\square \square \square$
	Work with sequences including those given by a formula for the nth term and those generated by a simple relation of the form $x_{n+1}=f\left(x_{n}\right)$	$\square \square \square$
	increasing sequences; decreasing sequences; periodic sequences.	
	Understand and use sigma notation for sums of series.	
	Understand and work with arithmetic sequences and series, including the formulae for nth term and the sum to n terms	$\square \square \square$
	Understand and work with geometric sequences and series, including the formulae for the nth term and the sum of a finite geometric series; the sum to infinity of a convergent geometric series, including the use of $\|r\|<1$; modulus notation	$\square \square \square$
	Use sequences and series in modelling.	
Trigonometry	Understand and use the definitions of sine, cosine and tangent for all arguments;	\square
	the sine and cosine rules;	
	the area of a triangle	
	Work with radian measure, including use for arc length and area of sector.	
	Understand and use the standard small angle approximations of sine, cosine and tangent $\sin \theta \approx \theta, \cos \theta \approx 1-\theta \wedge 2 / 2, \tan \theta \approx \theta$ Where θ is in radians	\square
	Understand and use the sine, cosine and tangent functions; their graphs, symmetries and periodicity.	$\square \square \square$
	Know and use exact values of sin, cos and tan	$\square \square \square$
	Understand and use the definitions of secant, cosecant and cotangent and of arcsin, arccos and arctan; their relationships to sine, cosine and tangent; understanding of their graphs; their ranges and domains.	$\square \square \square$
	Trigonometric identities	
	Double angle formulae and geometrical proofs of these formulae.	
	a $\sin ($ theta) $+\mathrm{b} \cos ($ theta) $=\mathrm{R} \cos ($ theta $+/-\mathrm{alpha}$) or $\mathrm{R} \sin ($ theta $+/-\mathrm{alpha})$	
	Construct proofs involving trigonometric functions and identities.	
	Use trigonometric functions to solve problems in context, including problems involving vectors, kinematics and forces.	$\square \square \square$
Exponentials and logarithms	Know and use the function $\mathrm{a}^{\wedge} \mathrm{x}$ and its graph, where a is positive.	$\square \square \square$
	Know and use the function $\mathrm{e}^{\wedge} \mathrm{x}$ and its graph	
	Know that the gradient of ekx is equal to kekx and hence understand why the exponential model is suitable in many applications.	$\square \square \square$
	Know and use the definition of loga x as the inverse of a x, where a is positive and $x \square 0$. Know and use the function In x and its graph. $a \neq 1$ Know and use In x as the inverse function of ex	$\square \square \square$
	Understand and use the laws of logarithms: loga $x+\operatorname{loga} y=\operatorname{loga}(x y) \log a x$ - loga y = loga $\square \square \square \square \square \square \square \square \mathrm{y}$ x k loga $\mathrm{x}=$ l loga xk (including, for example, $\mathrm{k}=-1$ and $\mathrm{k}=-12$)	$\square \square \square$
	Solve equations of the form $\mathrm{a} x=\mathrm{b}$	
	Use logarithmic graphs to estimate parameters in relationships of the form $\mathrm{y}=$ axn and $y=k b x$, given data for x and y	$\square \square \square$
	Understand and use exponential growth and decay; use in modelling (examples may include the use of e in continuous compound interest, radioactive decay, drug concentration decay, exponential growth as a model for population growth); consideration of limitations and refinements of exponential models.	$\square \square \square$
	Understand and use the derivative of $f(x)$ as the gradient of the tangent to the graph of $y=f(x)$ at a general point (x, y); the gradient of the tangent as a limit; interpretation as a rate of change	\square
	sketching the gradient function for a given curve	
	second derivatives	$\square \square \square$
	differentiation from first principles for small positive integer powers of x and for $\sin \mathrm{x}$ and $\cos \mathrm{x}$	

Statistics

Mechanics

Topic	Objectives
Quantities and units in mechanics	Understand and use fundamental quantities and units in the S.I. system: length, time, mass.
	Understand and use derived quantities and units: velocity, acceleration, force, weight, moment.
Kinematics	Understand and use the language of kinematics: position; displacement; distance travelled; velocity; speed; acceleration.
	Understand, use and interpret graphs in kinematics for motion in a straight line: displacement against time and interpretation of gradient; velocity against time and interpretation of gradient and area under the graph.
	Understand, use and derive the formulae for constant acceleration for motion in a straight line.
	Extend to 2 dimensions using vectors.
	Use calculus in kinematics for motion in a straight line: SUVAT
	Extend to 2 dimensions using vectors.
	Model motion under gravity in a vertical plane using vectors; projectiles.
Forces and Newton's laws	Understand the concept of a force; understand and use Newton's first law.
	Understand and use Newton's second law for motion in a straight line (restricted to forces in two perpendicular directions or simple cases of forces given as 2-D vectors); extend to situations where forces need to be resolved (restricted to 2 dimensions).
	Understand and use weight and motion in a straight line under gravity; gravitational acceleration, g, and its value in S.I. units to varying degrees of accuracy.
	(The inverse square law for gravitation is not required and g may be assumed to be constant, but students should be aware that g is not a universal constant but depends on location.)
	Understand and use Newton's third law; equilibrium of forces on a particle and motion in a straight line (restricted to forces in two perpendicular directions or simple cases of forces given as 2-D vectors); application to problems involving smooth pulleys and connected particles; resolving forces in 2 dimensions; equilibrium of a particle under coplanar forces.
	Understand and use addition of forces; resultant forces; dynamics for motion in a plane.
	Understand and use the $\mathrm{F} \leq \mu \mathrm{R}$ model for friction; coefficient of friction; motion of a body on a rough surface; limiting friction and statics.
Moments	Understand and use moments in simple static contexts.

Revision Tips

The exercises in your textbook are designed to "scaffold" your learning. It's teacher-talk for supporting you to understand harder topics. Once you understand them you don't need the scaffolding any more.

If you're struggling with exam questions consider going back to the textbook exercises and think about what each one is trying to help you to understand.
Don't forget to refer to the objectives in your checklist. Which ones apply to that exam question? It will help you to understand where your problem is.

Try exam questions in stages.

1. Can you do it without notes?
2. Can you do it with the textbook or YouTube to help?
3. Do you follow the solution when a friend or teacher explains it?
4. If you're really stuck get the markscheme out. You could try covering it with a piece of paper so that you can only see one mark at a time. Perhaps if you know how to start you can get further?

Think of your learning in two compartments - there are the techniques which textbook exercises practice, and then the skill of applying those techniques to an exam question.
Skill is being able to choose and apply techniques. The techniques are the repetitive bit - you want to be fast and accurate when performing them.
Skill is always harder to develop, because you need to have mastered the techniques!

